PBL剪力键承载力计算与有限元分析
作者:毕业通查重 发表时间:2020-05-12 20:35:46 浏览次数:416
-
硕博初稿查重系统 498.00元/篇• 语种:中文,英文,小语种• 适用:杂志社投稿,职称论文• 简介:硕博初稿检测(一般习惯叫做硕博预审版),论文查重检测上千万篇中文文献,超百万篇各类独家文献,超百万港澳台地区学术文献过千...开始检测
-
维普论文查重系统 4.00元/千字• 语种:中文,英文• 适用:杂志社投稿,职称论文• 简介:学位论文查重,维普论文检测系统:高校,杂志社指定系统,可检测期刊发表,大学生,硕博等论文。检测报告支持PDF、网页格式,...开始检测
-
万方论文查重系统 4.00元/千字• 语种:中文• 适用:杂志社投稿,职称论文• 简介:毕业论文查重,万方查重系统,涵盖期刊、学位论文、学术成果、学术会议论文的大型网络数据库;比肩中国知网的学术数据库。最多支...开始检测
-
PaperPass论文检测 3.00元/千字• 语种:中文• 适用:杂志社投稿,职称论文• 简介:论文查重平台,PaperPass的比对指纹数据库由超过9000万的学术期刊和学位论文,以及一个超过10亿数量的互联网网页...开始检测
摘要认识到PBL剪力键在土木工程各方面发挥了越来越重要作用,先对其极限承载力理论计算公式做了简单分析和讨论,其次利用MIDASFEA建立了有限元模型,对其静力荷载下位移应力等进行了分析比较,最后计算了在不同工况下PBL剪力键的关键位置处的应力和位移,计算结果表明:表明模型在整个加载过程中,工作状态良好,没有明显的破坏现象,承载力具有较大的安全储备。
关键词PBL剪力键,承载能力计算,有限元分析
1.引言
组合结构应用于桥梁工程以来,桥梁承载能力得到了很大提高,同时也大力促进了桥梁工程向大跨、高强方向的发展。其中,波纹钢腹板体外预应力PC组合箱梁桥融合了箱梁、体外预应力和组合结构的优点,正越来越受到国内外工程界的重视,很多专家也对此新型结构进行了探索和研究[1],国内学者利用大型有限元软件ANSYS对PBL剪力键进行了分析,分别就剪力键钢板及混凝土应力、模型应变和竖向变形、裂缝及破坏过程分析等三个方面做了较为详细的阐述。
PBL剪力键由带孔的钢板组成,可焊接在工字形截面的上翼缘,孔内可穿入钢筋。浇注混凝土后,孔内的混凝土形成一系列的混凝土棒状榫来抵抗钢构件和混凝土构件之间的竖向掀起,带孔的钢板主要抵抗水平剪力,能在钢与混凝土之间提供强大的连接作用,并具有很好的抗疲劳性能。很多研究表明,PBL剪力键无论在加工制作还是力学性能方面都比传统的剪力连接件有很大的优势[2]。目前国内外还没有规范对PBL键的形式、尺寸和承载能力作出规定[3],而PBL剪力键正是这种结构当中连接钢腹板与上下混凝土翼板的关键部件。因此,对PBL剪力键进行深入细致的分析就显的尤为必要。
2.PBL剪力键承载力理论计算
鉴于剪力键受力情况复杂多变,所以必须在理论分析的基础上,对其进行大量规范化的试验分析。目前很多PBL键试验研究大多借鉴了栓钉连接件的推出试验方法,但试件的形式和尺寸差别较大。国际上对PBL键也没有规定统一的试件和试验标准。
PBL剪力键的极限承载力一般指的是开孔钢板上的单孔极限剪切力。影响其大小的因素很多,如混凝土强度、钢筋的屈服强度、贯穿钢筋直径、钢板开孔直径等等。对于理论计算,下面给出近期一些学者在试验基础得出的计算方法。
3.PBL剪力键有限元分析
在有限元分析方面,其有限元分析过程较为繁琐,对于除其试验模型之外的剪力连接件计算没有很强的通用性,目前尚没有利用MIDAS-FEA对PBL剪力键分析的先例。钢和混凝土复合结构有限元分析的最大的难点在于材料模型的准确描述。钢和混凝土复合结构是由钢和混凝土这样两种具有不同物理力学性能的材料组,弹性模量E不是固定不变的,在加载过程中,当混凝土某一部分的应力超出其弹性范围后,弹性模量就会随着应力的变化而变化,材料的σ-ε曲线会变得很复杂。本模型在有限元计算中,钢材取用Q345钢,弹性模量为2.06×108gkN/m2,泊松比为0.3;混凝土标号为C50,弹性模量为3.45×107kN/m2,泊松比为0.2。
利用MIDASFEA建立上文深圳某大桥剪力键有限元模型,混凝土、开孔钢板和工字梁采用实体单元,贯穿钢筋采用钢筋单元,工字梁与开孔钢板用实体布尔并集结合,其与混凝土接触部分建立界面单元。整个模型采用自动划分网格,在实体接触部分,先进行实体分割,其次对相互嵌套接触的实体用布尔差集处理,然后对其接触线面部分进行线播种,最后完成网格耦合操作。
有限元模型及网格划分如图1所示。
对以上模型进行线性静态分析,在工字梁两端施加竖向荷载500KN,可以观察到各个关键点处位移和应力的变化。如图2所示。
在MIDASFEA中,利用后处理样式的一些操作,可以观察到变形前后剪力键模型的直观变化,另外可以标记出最大最小变形。如图3所示。
随着荷载变化,PBL剪力键各个关键位置最大位移,最大应力变化规律如图4所示。
由图4可见,混凝土和钢板的最大位移呈现类三阶曲线变化趋势,其拐点发生在荷载250KN左右,此时其位移变化率最高。混凝土榫和开孔钢板的最大MISES应力呈相同变化趋势,不同点在于,在100KN以下时,应力曲线基本重合。这是因为,在较小的荷载作用下,PBL剪力键与混凝土之间基本不存在滑移。因工字梁受集中点荷载作用,在加载过程中,工字梁受力点应力数值较大,一定程度上制约最大荷载的增加,当工字梁受力点应力达到400MPa时,停止继续加载。
4.结语
PBL剪力键在桥梁工程中发挥的作用越来越大,对其进行深入研究很有必要。本文从两个方面对其进行了尝试性的讨论分析,一是简要总结了PBL剪力键极限承载力的理论计算,二是利用MIDASFEA有限元软件对其应力和变形做了简单分析,可以更加直观地认识到其内部应力应变分布变化规律。
运用不同的公式对PBL剪力键承载能力计算结果不同,这主要是因为不同的公式考虑的影响因素不同,即使考虑相同因素,由于试验误差的原因,对于公式的修正侧重也有所不同。鉴于没有通用的理论计算公式,这就要求在实际中对于PBL剪力键的分析必须理论与试验相结合,最终得到符合自身实际要求的修正计算公式。利用MIDASFEA有限元软件对PBL剪力键进行分析,可以直观地了解其内部应力应变变化,跟通用软件ANSYS相比,FEA操作简便,更容易快速得到有限元分析结果。
知网论文查重:https://www.chachongba.net本站声明:网站内容来源于网络,如有侵权,请联系我们,我们将及时删除处理。